Создание ОС Windows. Структура ОС Windows. Виды операционных систем Краткая история создания ОС Windows

Год за годом происходит эволюция структуры и возможностей операционных систем. В последнее время в состав новых операционных систем и новых версий уже существующих операционных систем вошли некоторые структурные элементы, которые внесли большие изменения в природу этих систем. Современные операционные системы отвечают требованиям постоянно развивающегося аппаратного и программного обеспечения. Они способны управлять работой многопроцессорных систем, работающих быстрее обычных машин, высокоскоростных сетевых приспособлений и разнообразных запоминающих устройств, число которых постоянно увеличивается. Из приложений, оказавших влияние на устройство операционных систем, следует отметить мультимедийные приложения, средства доступа к Internet, а также модель клиент/сервер.
Неуклонный рост требований к операционным системам приводит не только к улучшению их архитектуры, но и к возникновению новых способов их организации. В экспериментальных и коммерческих операционных системах были опробованы самые разнообразные подходы и структурные элементы, большинство из которых можно объединить в следующие категории.

  • Архитектура микроядра.
  • Многопоточность.
  • Симметричная многопроцессорность.
  • Распределенные операционные системы.
  • Объектно-ориентированный дизайн.

Отличительной особенностью большинства операционных систем на сегодняшний день является большое монолитное ядро. Ядро операционной системы обеспечивает большинство ее возможностей, включая планирование, работу с файловой системой, сетевые функции, работу драйверов различных устройств, управление памятью и многие другие. Обычно монолитное ядро реализуется как единый процесс, все элементы которого используют одно и то же адресное пространство. В архитектуре микроядра ядру отводится лишь несколько самых важных функций, в число которых входят работа с адресными пространствами, обеспечение взаимодействия между процессами (interprocess communication - IPC) и основное планирование. Работу других сервисов операционной системы обеспечивают процессы, которые иногда называют серверами. Эти процессы запускаются в пользовательском режиме и микроядро работает с ними так же, как и с другими приложениями.

Такой подход позволяет разделить задачу разработки операционной системы на разработку ядра и разработку сервера. Серверы можно настраивать для требований конкретных приложений или среды.

Выделение в структуре системы микроядра упрощает реализацию системы, обеспечивает ее гибкость, а также хорошо вписывается в распределенную среду. Фактически микроядро взаимодействует с локальным и удаленным сервером по одной и той же схеме, что упрощает построение распределенных систем.

Многопоточность (multithreading) - это технология, при которой процесс, выполняющий приложение, разделяется на несколько одновременно выполняемых потоков. Ниже приведены основные различия между потоком и процессом.

Поток . Диспетчеризуемая единица работы, включающая контекст процессора (куда входит содержимое программного счетчика и указателя вершины стека), а также свою собственную область стека (для организации вызова подпрограмм и хранения локальных данных). Команды потока выполняются последовательно; поток может быть прерван при переключении процессора на обработку другого потока.

Процесс . Набор из одного или нескольких потоков, а также связанных с этими потоками системных ресурсов (таких, как область памяти, в которую входят код и данные, открытые файлы, различные устройства). Эта концепция очень близка концепции выполняющейся программы. Разбивая приложение на несколько потоков, программист получает все преимущества модульности приложения и возможность управления связанными с приложением временными событиями.
Многопоточность оказывается весьма полезной для приложений, выполняющих несколько независимых заданий, которые не требуют последовательного исполнения. В качестве примера такого приложения можно привести сервер базы данных, который одновременно принимает и обрабатывает несколько запросов клиентов. Если в пределах одного и того же процесса обрабатываются несколько потоков, то при переключении между различными потоками непроизводительный расход ресурсов процессора меньше, чем при переключении между разными процессами. Кроме того, потоки полезны при описанном в последующих главах структурировании процессов, которые являются частью ядра операционной системы.
До недавнего времени все персональные компьютеры, рассчитанные на одного пользователя, и рабочие станции содержали один виртуальный микропроцессор общего назначения. В результате постоянного повышения требований к производительности и понижения стоимости микропроцессоров производители перешли к выпуску компьютеров с несколькими процессорами.

Для повышения эффективности и надежности используется технология симметричной многопроцессорности (symmetric multiprocessing - SMP).

Этот термин относится к архитектуре аппаратного обеспечения компьютера, а также к образу действий операционной системы, соответствующему этой архитектурной особенности. Симметричную многопроцессорность можно определить как автономную компьютерную систему со следующими характеристиками.

  1. В системе имеется несколько процессоров.
  2. Эти процессоры, соединенные между собой коммуникационной шиной или какой-нибудь другой схемой, совместно используют одну и ту же основную память и одни и те же устройства ввода-вывода.
  3. Все процессоры могут выполнять одни и те же функции (отсюда название симметричная обработка).

Операционная система, работающая в системе с симметричной многопроцессорностью, распределяет процессы или потоки между всеми процессорами. У многопроцессорных систем есть несколько потенциальных преимуществ по сравнению с однопроцессорными, в число которых входят следующие.

Производительность. Если задание, которое должен выполнить компьютер, можно организовать так, что какие-то части этого задания будут выполняться параллельно, это приведет к повышению производительности по сравнению с однопроцессорной системой с процессором того же типа. Сформулированное выше положение проиллюстрировано на рис. 2.12. В многозадачном режиме в один и тот же момент времени может выполняться только один процесс, тогда как остальные процессы вынуждены ожидать своей очереди. В многопроцессорной системе могут выполняться одновременно несколько процессов, причем каждый из них будет работать на отдельном процессоре.

Надежность. При симметричной мультипроцессорной обработке отказ одного из процессоров не приведет к остановке машины, потому что все процессоры могут выполнять одни и те же функции. После такого сбоя система продолжит свою работу, хотя производительность ее несколько снизится.

Наращивание. Добавляя в систему дополнительные процессоры, пользователь может повысить ее производительность.

Масштабируемость. Производители могут предлагать свои продукты в различных, различающихся ценой и производительностью, конфигурациях, предназначенных для работы с разным количеством процессоров.
Важно отметить, что перечисленные выше преимущества являются скорее потенциальными, чем гарантированными. Чтобы надлежащим образом реализовать потенциал, заключенный в многопроцессорных вычислительных системах, операционная система должна предоставлять адекватный набор инструментов и возможностей.

Заблокирован
- Выполняется
Рис. 2.12. Многозадачность и многопроцессорность

Часто можно встретить совместное обсуждение многопоточности и многопроцессорности, однако эти два понятия являются независимыми. Многопоточность - полезная концепция для структурирования процессов приложений и ядра даже на машине с одним процессором. С другой стороны, многопроцессорная система может обладать преимуществами по сравнению с однопроцессорной, даже если процессы не разделены на несколько потоков, потому что в такой системе можно запустить несколько процессов одновременно. Однако обе эти возможности хорошо согласуются между собой, а их совместное использование может дать заметный эффект.

Заманчивой особенностью многопроцессорных систем является то, что наличие нескольких процессоров прозрачно для пользователя - за распределение потоков между процессорами и за синхронизацию разных процессов отвечает операционная система. В этой книге рассматриваются механизмы планирования и синхронизации, которые используются, чтобы все процессы и процессоры были видны пользователю в виде единой системы. Другая задача более высокого уровня - представление в виде единой системы кластера из нескольких отдельных компьютеров. В этом случае мы имеем дело с набором компьютеров, каждый из которых обладает своей собственной основной и вторичной памятью и своими модулями ввода-вывода. Распределенная операционная система создает видимость единого пространства основной и вторичной памяти, а также единой файловой системы. Хотя популярность кластеров неуклонно возрастает и на рынке появляется все больше кластерных продуктов, современные распределенные операционные системы все еще отстают в развитии от одно- и многопроцессорных систем. С подобными системами вы познакомитесь в шестой части книги.

Одним из последних новшеств в устройстве операционных систем стало использование объектно-ориентированных технологий. Объектно-ориентированный дизайн помогает навести порядок в процессе добавления к основному небольшому ядру дополнительных модулей. На уровне операционной системы объектно-ориентированная структура позволяет программистам настраивать операционную систему, не нарушая ее целостности. Кроме того, этот подход облегчает разработку распределенных инструментов и полноценных распределенных операционных систем.

Сегодня огромная часть населения земли на постоянной основе взаимодействует с компьютерами, кого-то обязывает работа, кто-то ищет информацию в Сети, а кто-то просто проводит время в играх. У каждого свои потребности, а значит, компьютер должен им соответствовать. И если речь идет о “железе” (технической составляющей компьютера), то тут все более менее ясно: чем новее, тем лучше. Но вот “софтовая” (программное обеспечение) часть, требует особого внимания.

Каждый компьютер работает под управлением определенной операционной системы, коих великое множество, каждая из которых подходит для тех или иных задач, доступного оборудования и так далее. Поэтому немаловажным фактором является выбор этой операционной системы.

Существует достаточно массивный список операционных систем, но в данном материале речь пойдет о трех столпах, сильно повлиявших на индустрию и занимающих основную долю среди всех операционных систем: Windows, MacOS и Linux.

Проприетарные операционные системы

Для начала стоит уточнить, что есть ОС проприетарные, те, что распространяются по лицензии производителя. К таковым относятся Windows, список которых изложен ниже, и MacOS. Несмотря на то что обе системы можно загрузить в Сети (украсть), правильным будет приобрести лицензию у компании-распространителя и активировать ее.

Преимуществом таких систем является их развитость, огромное количество качественного программного обеспечения и грамотная техподдержка, которая поможет в случае неполадок.

“Свободные” операционные системы

К таковым относится практически все семейство Linux, за исключением разве что некоторых разработок с бухгалтерским или другим профессиональным программным обеспечением. Эти ОС можно загрузить абсолютно бесплатно и установить на любой компьютер без зазрения совести.

Подобные системы создаются независимыми разработчиками совместно с сообществом, посему в большинстве случаев качество программ оставляет желать лучшего, зато такие системы гораздо больше защищены и работают стабильнее своих проприетарных конкурентов.

Windows

Абсолютно все, кто хоть раз имел дело с компьютером, знают об этом продукте компании Microsoft. В частности это касается сверхуспешного релиза Windows 7. Список операционных систем Microsoft насчитывает уже десяток поколений. Они крайне популярны во всем мире и занимают почти 90% рынка. Что говорит о беспрецедентном лидерстве.

  • Windows XP;
  • Windows Vista;
  • Windows 7;
  • Windows 8;
  • Windows 10;

Список намеренно начинается с Windows XP, так как это самая старая версия, оставшаяся в употреблении до сегодняшнего дня.

Chrome OS

Слаборазвитый продукт от компании Google, который ограничен лишь веб-приложениями и одноименным браузером. Это система не является конкуретоспособной в сравнении с Windows и Mac, но сделана с прицелом на будущее, когда веб-интерфейсы смогут заменить “реальное” программное обеспечение. По умолчанию установлена на всех компьютерах Chromebook.

Установка нескольких систем и использование виртуальных машин

Так как каждая платформа имеет свои плюсы и минусы, нередко возникает необходимость работать сразу с несколькими. Разработчики компьютеров об этом знают, поэтому предлагают пользователям возможность установить на диск сразу две или три системы.

Делается это просто. Необходим лишь дистрибутив системы (диск или флешка с загруженным на их установочным материалом) и свободное пространство на жестком диске. Все современные операционные системы предлагают во время установки распределить место и создать загрузочный механизм, который покажет список операционных систем при загрузке компьютера. Все выполняется в полуавтоматическом режиме и под силу любому пользователю.

На компьютерах Apple имеется специальная утилита - BootCamp, которая разработана для простой и бесшовной установки Windows рядом с MacOS.

Существует и другой способ - установка виртуальной системы внутри реальной. Для этого используются программы: VmWare и VirtualBox, способные эмулировать работу полноценного компьютера и запускать операционные системы.

Вместо заключения

Список операционных систем для компьютера не ограничивается вышеизложенными. Существует масса продуктов от разных компаний, но все они довольно специфичны и не заслуживают внимания рядового пользователя. Выбор стоит делать между Windows, MacOS и Linux, так как они могут закрыть большую часть потребностей и достаточно просты в освоении.

Выполнила:студентка 105 группы

Куриленко В.А.

Преподаватель:Шишин И.О.

Санкт – Петербург

Введение

Заключение

Список используемой литературы

Введение

Операционная система, (сокращенно ОС) - комплекс управляющих и обрабатывающих программ, которые, с одной стороны, выступают как интерфейс между устройствами вычислительной системы и прикладными программами, а с другой - предназначены для управления устройствами, управления вычислительными процессами, эффективного распределения вычислительных ресурсов между вычислительными процессами и организации надёжных вычислений.

В составе ОС различают 3 группы компонентов:

· системные библиотеки

· оболочка с утилитами

В определении состава ОС значение имеет критерий операциональной целостности (замкнутости): система должна позволять полноценно использовать (включая модификацию) свои компоненты. Поэтому в полный состав ОС включают и набор инструментальных средств (от текстовых редакторов до компиляторов, отладчиков и компоновщиков).

Функции операционных систем (основные):

2. Стандартизированный доступ к периферийным устройствам;

3. Управление оперативной памятью;

4. Управление доступом к данным на энергонезависимых носителях;

5. Пользовательский интерфейс;

6. Сетевые операции

7. Параллельное или псевдопараллельное выполнение задач (многозадачность)

8. Взаимодействие между процессами: обмен данными, взаимная синхронизация

9. Разграничение прав доступа и многопользовательский режим работы (авторизация, аутентификация)

Основные классификации операционных систем

Операционные системы могут различаться особенностями реализаций внутренних алгоритмов управления основными ресурсами компьютера (процессорами, устройствами, памятью), особенностями использованных методов проектирования, типами аппаратных платформ, областями использования и многими другими свойствами.

Существует несколько классификаций операционных систем, в которых выделяют определенные критерии, отражающие разные существенные характеристики систем, рассмотрим наиболее часто встречающиеся:

По назначению

1. Системы общего назначения.

Подразумевает ОС, предназначенные для решения широкого круга задач, включая запуск различных приложений, разработку и отладку программ, работу с сетью и мультимедиа.

2. Системы реального времени.

Предназначены для работы в контуре управления объектами.

3. Прочие специализированные системы.

Это различные ОС, ориентированные, прежде всего на эффективное решение определенного класса, с большим или меньшим ущербом для прочих задач

По характеру взаимодействия с пользователем

1. Пакетные ОС, обрабатывающие заранее подготовленные задания

2. Диалоговые ОС, выполняющие задания пользователя в интерактивном режиме

3. ОС с графическим интерфейсом

4. Встроенные ОС, не взаимодействующие с пользователем

По числу одновременного выполнения задач

1. Однозадачные ОС.

В таких систем ах в каждый момент времени может существовать не более чем один пользовательский процесс. Однако, одновременно с этим, могут работать системные процессы

2. Многозадачные ОС.

Они обеспечивают параллельное выполнение некоторых пользовательских процессов. Реализация многозадачности требует значительного усложнения алгоритмов и структур данных, используемых в системе.

По числу одновременных пользователей

1. Однопользовательские ОС.

Для них характерен полный пользовательский доступ к ресурсам. Подобные системы приемлемы в основном на изолированных компьютерах.

2. Многопользовательские ОС.

Их важной компонентой являются средства защиты данных и процессов каждого пользователя, основанные на понятии владельца ресурса и на точном указании прав доступа, предоставленных каждому пользователю системы.

По аппаратурной основе

1. Однопроцессорные ОС.

2. Многопроцессорные ОС.

В задачи такой системы входит эффективное распределение выполняемых заданий по процессорам и организация согласованной работы всех процессоров.

3. Сетевые ОС.

Они включают возможность доступа к другим компьютерам локальной сети, работы с файловыми и другими серверами.

4. Распределенные ОС.

Распределенная система, используя ресурсы локальной сети, представляет их пользователю как единую систему, не разделенную на отдельные машины.

По способу построения

1. Микроядерные

2. Монолитные

Классификация операционных систем по семействам

Операционные системы семейства OS/2

OS/2 – семейство многозадачных операционных систем с графическим интерфейсом, есть версии для многопроцессорных машин. OS/2 создавалась для собственных нужд и задач фирмы IMB. OS/2 использовалась IMB в качестве основы некоторого числа программных решений, таких как комментаторские системы олимпийских игр, программное обеспечение для банков. Под нее практически не существует программного обеспечения.

Поддержка OS/2 до последнего времени осуществлялась выпуском версий OS/2 безо всяких кардинальных изменений и улучшений.

Исторически сложилось такая ситуация, что в данный момент эта ОС на рынке программного обеспечения мало распространена. Существует несколько версий ОС OS/2 WarpServer, являющихся операционными системами для серверов.

В рамках проекта Core/2 существуют два действующих направления по развитию OS/2:

· OS/4 - создание современного ядра методом реверс-инижиринга и полного переписывания кода на основе существующих ядер.

· osFree – создание всей операционной системы «с нуля» на основе современных микроядерных технологий и активного использования OpenSource наработок.

Операционные системы семейства UNIX

Первая система UNIX была разработана в 1969 г. в подразделении Bell Labs компании AT&T. С тех пор было создано большое количество различных UNIX-систем. Все ОС, относящиеся к этому семейству, являются многозадачными, многопользовательскими, с графическим интерфейсом, обеспечивают достаточную надежность и защиту данных. Эти ОС ставятся на различные аппаратные платформы (как на ПК, так и на большие машины такие как мэйнфреймы и суперЭВМ).

Некоторые отличительные признаки UNIX-систем включают в себя:

· использование простых текстовых файлов для настройки и управление системой;

· широкое применение утилит, запускаемых в командной строке;

· взаимодействие с пользователем посредством виртуального устройства – терминалом;

· использование конвейеров из нескольких программ, каждая из которых выполняет одну задачу;

· предоставление физических и виртуальных устройств и некоторых средств межпроцессорного взаимодействия как файлов.

Идеи, заложенные в основу UNIX, оказали огромное влияние на развитие компьютерных операционных систем. В настоящее время UNIX-системы признаны одними из самых исторически важных ОС.

Совокупная доля различных UNIX-систем занимает значительную долю на рынке серверных программ. Ввиду большой надежности системы UNIX она широко используется для организации работы глобальной сети Internet.

Операционные системы семейства Linux

Linux является одной из распространенных систем версий UNIX. Она может организовать работу как рабочих станций, так и сервера. Поддерживает технологию Plug & Play (стандарт аппаратной и программной архитектуры, который делает возможным распознавание устройств).

Linux – это многозадачная и многопользовательская операционная система для бизнеса, образования и индивидуального программирования. Как и все UNIX-системы, она ориентирована на работу в сети.

Одним из достоинств Linux можно считать высокую скорость работы. Эта ОС может работать на машинах не очень большой мощности. Второе достоинство заключается в том, что она может применяться как для различных типов серверов, так и для настольных компьютеров.

В отличие от большинства других операционных систем, Linux не имеет единой «официальной» комплектации. Вместо этого Linux поставляется в большом количестве так называемых дистрибутивов, в которых ядро Linux соединяется с утилитами GNU и другими прикладными программами (например, X.org), делающими её полноценной многофункциональной операционной средой.

Операционные системы семейства Windows

операционный система интерфейс

Платформы операционных систем WindowsNT и Windows 2000 представляют собой операционные системы для использования на самых разнообразных компьютерах. Все ОС семейства Windows являются многозадачными системами с графическим интерфейсом. Они работают на платформах x86, x86-64, IA-64, ARM. Существовали также версии для DEC Alpha, MIPS, PowerPC и SPARC.

Одним из достоинств ОС семейства Windows является поддержка технологии Plug & Play. Эта технология упрощает для пользователя подключение разных внешних устройств.

Операционная система – это комплекс программ, обеспечивающих управление работой компьютера и его взаимодействие с пользователем.

С точки зрения человека операционная система служит посредником между человеком, электронными компонентами компьютера и прикладными программами. Она позволяет человеку запускать программы, передавать им и получать от них всевозможные данные, управлять работой программ, изменять параметры компьютера и подсоединённых к нему устройств, перераспределять ресурсы. Работа на компьютере фактически является работой с его операционной системой. При установке на компьютер только операционной системы (ОС) ничего содержательного на компьютере также сделать не удастся. Для ввода и оформления текстов, рисования графиков, расчёта зарплаты или прослушивания лазерного диска нужны специальные прикладные программы. Но и без ОС ни одну прикладную программу запустить невозможно.

Операционная система решает задачи, которые можно условно разделить на две категории:

  • во-первых, управление всеми ресурсами компьютера;
  • во-вторых, обмен данными между устройствами компьютера, между компьютером и человеком.

Кроме того, именно ОС обеспечивает возможность индивидуальной настройки компьютера: ОС определяет, из каких компонентов собран компьютер, на котором она установлена, и настраивает сама себя для работы именно с этими компонентами.

Ещё не так давно работы по настройке приходилось выполнять пользователю вручную, а сегодня производители компонентов компьютерной техники разработали протокол plug-and-play (включил - заработало). Этот протокол позволяет операционной системе в момент подключения нового компонента получить информацию о новом устройстве, достаточную для настройки ОС на работу с ним.

Операционные системы для ПК различаются по нескольким параметрам. В частности, ОС бывают:

  • однозадачные и многозадачные ;
  • однопользовательские и многопользовательские ;
  • сетевые и несетевые .

Кроме того, операционная система может иметь командный или графический многооконный интерфейс (или оба сразу).

Однозадачные операционные системы позволяют в каждый момент времени решать только одну задачу. Такие системы обычно позволяют запустить одну программу в основном режиме.

Многозадачные системы позволяют запустить одновременно несколько программ, которые будут работать параллельно.

Главным отличием многопользовательских систем от однопользовательских является наличие средств защиты информации каждого пользователя от несанкционированного доступа других пользователей. Следует заметить, что не всякая многозадачная система является многопользовательской, и не всякая однопользовательская ОС является однозадачной.

В последние годы фактическим стандартом стал графический многооконный интерфейс, где требуемые действия и описания объектов не вводятся в виде текста, а выбираются из меню, списков файлов и т.д.

В настоящее время, с появлением мощных компьютеров, широкое распространение получили два типа ОС. К первому типу относятся достаточно похожие ОС семейства Windows компании Microsoft. Они многозадачные и имеют многооконный графический интерфейс. На рынке персональных компьютеров с Windows конкурируют ОС типа UNIX . Это многозадачная многопользовательская ОС с командным интерфейсом. В настоящее время разработаны расширения UNIX, обеспечивающие многооконный графический интерфейс. UNIX развивалась в течение многих лет разными компаниями, но до недавнего времени она не использовалась на персональных компьютерах, т.к. требует очень мощного процессора, весьма дорога и сложна, её установка и эксплуатация требуют высокой квалификации. В последние годы ситуация изменилась. Компьютеры стали достаточно мощными, появилась некоммерческая, бесплатная версия системы UNIX для персональных компьютеров - система Linux . По мере роста популярности этой системы в ней появились дополнительные компоненты, облегчающие её установку и эксплуатацию. Немалую роль в росте популярности Linux сыграла мировая компьютерная сеть Internet. Хотя освоение Linux гораздо сложнее освоения систем типа Windows, Linux - более гибкая и в то же время бесплатная система, что и привлекает к ней многих пользователей.

Существуют и другие ОС. Известная компания Apple производит компьютеры Macintosh с современной ОС MacOS . Эти компьютеры используются преимущественно издателями и художниками. Фирма IBM производит ОС OS/2 . Операционная система OS/2 такого же класса надёжности и защиты, как и Windows NT.


Виды операционных систем

Операционная система (ОС) - программа или совокупность программ, управляющая основными действиями ЭВМ, ее периферийными устройствами и обеспечивающая запуск всех остальных программ, а также взаимодействие с оператором.

Функции ОС :
* Управление памятью;
* Управление доступом к устройствам ввода-вывода;
* Управление файловой системой;
* Управление взаимодействием процессов, диспетчеризация процессов;
* Управление использованием ресурсов;
* Загрузка программ в оперативную память и их выполнение;
* Интерфейс с пользователем;
* Межмашинное взаимодействие (сеть);
* Защита самой системы и пользовательских данных и программ;
* Разграничение прав доступа и многопользовательский режим работы.

Многозадачность (multitasking, multiprogramming) - свойство операционной системы и ЭВМ, при которой один процессор может обрабатывать несколько разных программ или разных частей одной программы одновременно. При этом все программы вместе удерживаются в оперативной памяти и каждая выполняется за какой-то период времени. Например, одна программа может работать, пока другие ожидают включения периферийного устройства или сигнала (команды) оператора. Способность к многозадачности зависит в большей степени от операционной системы, чем от типа ЭВМ. Наиболее распространенной многозадачной системой является Unix фирмы AT&T’s Bell Laboratories (США).

Виды ОС:
* Многопользовательская система , система с коллективным доступом, система коллективного доступа (multiuser system, multiaccess system) - вычислительная система или ее часть (например операционная система), позволяющая нескольким пользователям одновременно иметь доступ к одной ЭВМ со своего терминала (локального или удаленного). Многопользовательский характер работы достигается благодаря режиму разделения времени, который заключается в очень быстром переключении ЭВМ между разными терминалами и программами и соответственно быстрой отработке команд каждого пользователя. При этом последний не замечает задержек времени, связанных с обслуживанием других пользователей. Примерами разработок указанного вида могут служить помимо Windows операционные системы: NetWare, созданная и развиваемая фирмой Novell (США) для локальных информационных вычислительных систем; Unix фирмы AT&T’s Bell Laboratories (США); REAL/32 и др.
* Однопользовательская система (one user system) - операционная система, не обладающая свойствами многопользовательской. Примерами однопользовательских ОС являются MS DOS фирмы Microsoft (США) и ОС/2, созданная совместно Microsoft и IBM.
* Сетевая операционная система, СОС (NOS, Network Operating System) - операционная система, предназначенная для обеспечения работы вычислительной сети. Примерами сетевых операционных систем являются Windows NT, Windows 2000, Novel Netware, Unix, Linux и др.

Типы ОС :
* графические (с наличием графического пользовательского интерфейса - GUI) - текстовые (только командная строка);
* бесплатные - платные;
* открытые (с возможностью редактировать исходный код) - закрытые (без возможности редактировать исходный код);
* клиентские - серверные;
* высокая стабильность (устойчивость к сбоям аппаратной части)- низкая стабильность;
* простая в администрировании (для рядового пользователя) - сложная, для системных администраторов;
* 16-разрядная - 32-разрядная - 64-разрядная (в далеком прошлом были еще и 8-разрядные);
* с высоким уровнем безопасности данных - с низким уровнем безопасности;

Понятие операционной системы
Существуют две группы определений ОС: «совокупность программ, управляющих оборудованием» и «совокупность программ, управляющих другими программами». Обе они имеют свой точный технический смысл, который, однако, становится ясен только при более детальном рассмотрении вопроса о том, зачем вообще нужны операционные системы.

Есть приложения вычислительной техники, для которых ОС излишни. Например, встроенные микрокомпьютеры содержатся сегодня во многих бытовых приборах, автомобилях (иногда по десятку в каждом), сотовых телефонах и т. п. Зачастую такой компьютер постоянно исполняет лишь одну программу, запускающуюся по включении. И простые игровые приставки - также представляющие собой специализированные микрокомпьютеры - могут обходиться без ОС, запуская при включении программу, записанную на вставленном в устройство «картридже» или компакт-диске. (Многие встроенные компьютеры и даже некоторые игровые приставки на самом деле работают под управлением своих ОС).

Операционные системы, в свою очередь, нужны, если:
* вычислительная система используется для различных задач, причём программы, исполняющие эти задачи, нуждаются в сохранении данных и обмене ими. Из этого следует необходимость универсального механизма сохранения данных; в подавляющем большинстве случаев ОС отвечает на неё реализацией файловой системы. Современные ОС, кроме того, предоставляют возможность непосредственно «связать» вывод одной программы с вводом другой, минуя относительно медленные дисковые операции;
* различные программы нуждаются в выполнении одних и тех же рутинных действий. Напр., простой ввод символа с клавиатуры и отображение его на экране может потребовать исполнения сотен машинных команд, а дисковая операция - тысяч. Чтобы не программировать их каждый раз заново, ОС предоставляют системные библиотеки часто используемых подпрограмм (функций);
* между программами и пользователями системы необходимо распределять полномочия, чтобы пользователи могли защищать свои данные от чужого взора, а возможная ошибка в программе не вызывала тотальных неприятностей;
* необходима возможность имитации «одновременного» исполнения нескольких программ на одном компьютере (даже содержащем лишь один процессор), осуществляемой с помощью приёма, известного как «разделение времени». При этом специальный компонент, называемый планировщиком, «нарезает» процессорное время на короткие отрезки и предоставляет их поочередно различным исполняющимся программам (процессам);
* наконец, оператор должен иметь возможность, так или иначе, управлять процессами выполнения отдельных программ. Для этого служат операционные среды, одна из которых - оболочка и набор стандартных утилит - является частью ОС (прочие, такие, как графическая операционная среда, образуют независимые от ОС прикладные платформы). Таким образом, современные универсальные ОС можно охарактеризовать прежде всего как
* использующие файловые системы (с универсальным механизмом доступа к данным),
* многопользовательские (с разделением полномочий),
* многозадачные (с разделением времени).

Многозадачность и распределение полномочий требуют определённой иерархии привилегий компонентов самой ОС. В составе ОС различают три группы компонентов:
* ядро, содержащее планировщик; драйверы устройств, непосредственно управляющие оборудованием; сетевую подсистему, файловую систему;
* системные библиотеки и
* оболочку с утилитами.

Большинство программ, как системных (входящих в ОС), так и прикладных, исполняются в непривилегированном («пользовательском») режиме работы процессора и получают доступ к оборудованию (и, при необходимости, к другим ядерным ресурсам, а также ресурсам иных программ) только посредством системных вызовов. Ядро исполняется в привилегированном режиме: именно в этом смысле говорят, что ОС (точнее, её ядро) управляет оборудованием.

Текущая редакция стандарта на ОС содержит определения около тысячи системных вызовов и других библиотечных подпрограмм (часть из которых должна реализоваться только в определённых классах систем; напр., в системах «реального времени») и около 200 команд оболочки и утилит ОС. Стандарт определяет лишь функции вызовов и команд, и не содержит указаний относительно способов их реализации.

Стандарт, кроме этого, определяет способ адресации файлов в системе, локализацию (установки, касающиеся национально-специфических моментов, таких, как язык сообщений или формат даты и времени), совместимый набор символов, синтаксис регулярных выражений, структуру каталогов в файловой системе, формат командной строки и некоторые другие аспекты поведения ОС.

В определении состава ОС значение имеет критерий операциональной целостности (замкнутости): система должна позволять полноценно использовать (включая модификацию) свои компоненты. Поэтому в полный состав ОС включается и набор инструментальных средств (от текстовых редакторов до компиляторов, отладчиков и компоновщиков). Операциональной замкнутостью обладают системы, удовлетворяющие «разработческому» профилю в терминах стандарта.

История развития ОС
Предшественником ОС следует считать служебные программы (такие, как загрузчики), а также библиотеки часто используемых подпрограмм, начавшие разрабатываться с появлением универсальных компьютеров 1-го поколения (конец 1940-х годов). Служебные программы минимизировали физические манипуляции оператора с оборудованием, а библиотеки позволяли избежать многократного программирования одних и тех же действий (осуществления операций ввода-вывода, вычисления математических функций и т. п.).

В 1950-60-х годах сформировались и были реализованы основные идеи, определяющие функциональность ОС: пакетный режим, разделение времени и многозадачность, разделение полномочий, реальный масштаб времени, файловые структуры и системы.

Развитие "нормальных ОСей" началось в 1965 году. Самой первой операционной системой является Multics, в последствии на его основе был создан Unix. Multics использовался на компьютерах, которые применялись для создания мультфильмов. Не имея перспективы развития, проект операционной системы был закрыт, а ее создатели стали создавать новые программы и даже что-то похожее на операционные системы.

Более менее нормальное творение удалось создать Кену Томпсону. В 1969 году он написал игру Space Travel, которая не имела совершенно никакого успеха и перспектив развития у нее небыло. Но это сильно сказано - небыло. Взявшись за свое детище, Кен Томпсон стал модернизировать операционную систему Multics для работы игры. Позже операционная система получила название Unics (от названия операционной системы Multics), а еще позже - UNIX.

Операционная система была написана с использованием языка программирования - ассемблер, не имела графического интерфейса, работала в режиме командной строки. Отличалась от предыдущей надежностью. Это качество сохранилось и до теперешних времен. В ней имелся командный интерпритатор BASH - Bounre Again SHell, позволяющий работать в среде операционной системы. Немного позже Кен Томпсон и его соратники по созданию Unix, стали продавать свою систему, как вполне устойчивый коммерческий проект.

Одной из первых операционнйх систем для персональных компьютеров была CP/M (Control Program/Microcomputer) - Управляющая Программа/Микрокомпьютер, созданная для компьютеров с 8-разрядными процессорами Intel 8080, Intel 8085, Z-80. Создатель системы: Гарри Килдэл, в последующем основатель компании Digitasl Research. При создании персональных компьютеров в 1981 году компания обратилась к IBM Digital Research с предложением создать для IBM PC 5150 операционную систему с графическим интерфейсом. Те отказались помогать, и поэтому компания IBM обратилась за помощью к фирме Microsoft, которая с 1982 года начинает выпускать для IBM-совместимых персоналок операционне системы MS-DOS (Microsoft Discs Opereating System).

Почуствовав запах больших денег за счет успеха MS-DOS, компания Microsoft приступает к разработке операционной системы с графическим интерфейсом. Это было в 1983 году. Именно тогда команда, специализирующаяся по созданию программ для MS DOS, начинают заниматься созданием новой ОС уже с графическим интерфейсом.

Графический интерфейс - это оболочка, позволяющая использовать для выполнения программ графические элементы, которые можно видеть на экране монитора. К таким элементам можно отнести ярлыки, ссылки, кнопки меню, контекстные меню, Главное меню, рабочий стол и, разумеется, окна. Всеми этими элементами можно управлять и даже запрограммировать все эти элементы на какие-нибудь действия (если это позволяет операционная система). Уже не надо искать на клавиатуре клавиши букв при вводе команд с клавиатуры и ожидать результата выполнения той или иной команды. Достаточно щелкнуть мышкой по тому или иному элементу - и тем самым сразу запускается программа, на которую указывает элемент. Программа работала уже не в консольком режиме, а в оконном - программа запускалась в графическом окне, для управления программой стало возможным использовать кнопки управления, которые запускались при запуске той или иной программы. Окно можно свернуть, развернуть и закрыть - это основные свойства окон. Конечно все вышеперечисленные элементы графического интерфейса свойственны только современным операционным системам, в первых графических операционных системах таких элементов небыло.

Первой операционной системой с поддержкой графического интерфейса пользователя (GUI, Graphical User Interface - полное название графического интерфейса) стала операционная система Macintosh (сокращенно - Mac), разработанная для компьютеров Apple PC. Такой интерфейс создавался в пределах компании Apple и никто не имел никакого права копировать эту систему и устанавливать ее на компьютерах, не совместимых с Apple. Этот интерфейс был весьма удобным, появился рабочий стол, окна, раскрывающиеся меню и пиктограммы ярлыков позволяли использовать компьютер с максимальным удобством. Впервые такой графический интерфейс был разработан в компании Apple в 1983 году, а его продажа и даже реклама компьютера Apple с графической ОС Macintosh прошла по Американскому телевидению в 1984 году.

Лишь 20 ноября 1985 года компания Microsoft представила свою "операционную систему" Windows 1.0 на выставке компьютерных технологий в Лас-Вегасе. Данная операционная система была очень "сырой", ее даже назвать полноценной операционной системой - это было бы просто самообманом. Windows 1.0 был построен с использованием DOS, фактически он являлся полноценной надстройкой DOS - графический проводник, позволяющий выполнять простейшие задачи над файлами и запускать программы после одного щелчка мышки по пикрограмме программы. В системе была так же реализована панель управления. На этом собственно удобство ОС заканчивалось. Система работала на компьютере с процессором i286. Позже последовал проект Windows 2.0, за ним Windows NT (New Technologies), Windows 3.0. Настоящий успех начался с операционными системами с выходом версии Windows 3.0.

Несколько слов о так называемых программах-надстройках DOS. Это программы, запускаемые при запуске операционной системы, позволяющие выполнять операции по редактированию текста с помощью специального редактора, копирование, перемещение, переименование и удаление файлов и каталогов с носителей информации и тому подобные операции. В таких надстройках была реализована мышка, клавиатурные комбинации клавиш, а для еще большего удобства были задействованы специальные функциональные клавиши - это 12 клавиш, подписанные как F1, F2, F3 и так далее, находятся и на современных клавиатурах над группой буквенно-цифровых клавиш. Пример подобных программ - Norton Commander производства Symantec Corporation. Подобные программы существуют и сейчас и активно используются на серверах при администрировании. Подобные Nortonу: Volkov Commander, Far, Windows Commander.

В 1986 году компания IBM и Microsoft объеденили свои усилия с целью создания качественного программного обеспечения. Результатом их работы стала операционная система OS/2.